

AN10258

How to use the LPC900 In-circuit programming (ICP)

Rev. 01 — 24 March 2004

Application note

Document information

Info	Content
Keywords	LPC900 In-circuit programming (ICP)
Abstract	How to use the LPC900 In-circuit programming (ICP)

Revision history

Rev	Date	Description
01	20040324	Initial version (9397 750 12995)

Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

9397 750 12995

Application note

© Koninklijke Philips Electronics N.V. 2003. All rights reserved.

1. Introduction

This document gives an overview of how the ICP (In Circuit Programming) on the P89LPC9xx can be done.

ICP is one of the programming methods of the LPC900 microcontroller family.

ICP uses a serial shift protocol that requires 5 pins to program: PCL, PDA, Reset, V_{DD} and V_{SS} . ICP is different from ISP (In System Programming) because it is done completely by the microcontroller's hardware and does not require a bootloader.

The ICP programming method is a serial programming method, shifting in programming commands and shifting data in and out with a clock and dataline.

Using ICP on the application board has many advantages:

- The latest software revision can be loaded into the product before shipping.
- Field updates can be made when reprogramming the chip on the application board.
- In the debug stage of development the chip can stay on the application board while being reprogrammed.

2. Hooking up ICP to the Application board

Figure 1 shows how an ICP programming device can be hooked up to the Application board. This allows the microcontroller to be (re)programmed while it is already soldered on the board.

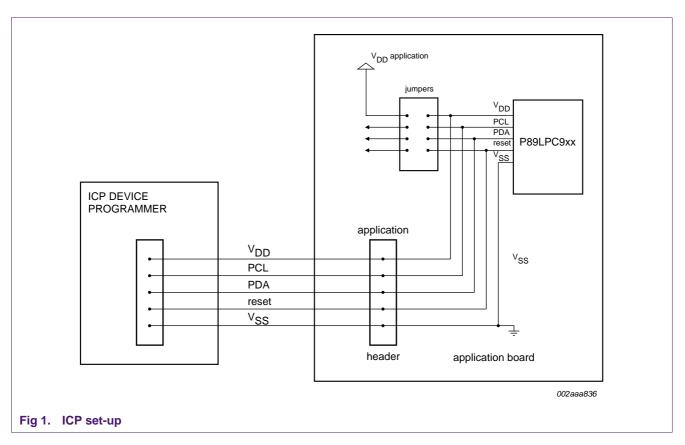


Table 1 shows the pins needed for ICP programming.

Table 1: F	Program	ming pins used for ICP	
Mnemonic	Туре	Name and function	Disconnect regular connection?
V _{SS}	Р	Ground: 0 V reference.	No
V _{DD}	Р	Power Supply: 3 V	Yes[1]
PCL	I	Serial clock input for programming communication.	Yes[1]
PDA	I/O	Serial data I/O for programming communication.	Yes <mark>[1]</mark>
RESET	I	ICP programming entry pin	Yes ^[1]

[1] The connection to the application has to be disconnected during ICP programming.

The majority of the LPC900 family have the 5 pins necessary for ICP located in the same configuration. Only the LPC901/902/903 differ from the same configuration, see Section 5 for the pin configurations of the LPC900 parts.

AN10258

How to use ICP

3. Using the EPM900 as an ICP programmer

The EPM900 Emulator / Programmer from Keil Software supports ICP programming of all devices that have ICP. The EPM900 can be setup to do the ICP programming using the Keil μ Vision IDE. Under the 'Utilities' tab in 'Options for Target', select 'Use Target Driver for Flash Programming' and select the Target to be 'LPC900 EPM Emulator/ Programmer'.

Click on 'Settings' to select the device you want to program.

vice Tar	get Output Listing C51 A51 BL51 Locate BL51 Misc Debug Utilities
Configure I	Flash Menu Command
Use T	arget Driver for Flash Programming
	LPC900 EPM Emulator/Programmer Settings
O Use E	xternal Tool for Flash Programming
	and: FM.EXE
	ents: "DEVICE(\$D,\$X) ERASE(DEVICE,PROTECTISP) HEXFILE(#H,NOCHECKSUMS,NOFILL,PROTECT
	Run Independent

Fig 2. Options for the EPM900

3.1 Set-up

In the 'Settings' menu you can select the device you want to program from the Device pull-down menu. The programming mode will be ICP by default on devices that only have ICP programming capability. The parts can be hooked up one-to-one from the EPM900 to the application board as shown in Figure 1. Connect all 5 ICP pins and then program with the EPM900.

AN10258 How to use ICP

Download Function Erase Program Verify	Write Configuration
Device Options	Programming mode: ICP Adapter: Pin to Pin
Device Configuration & Security Use Configuration from START900.A51 UCFG1: 0x63 Oscillator: Internal RC Oscillator WDSE Watchdog Safety Enable B0E Brownout Detect Enable RPE Reset Pin Enable WDTE Watchdog Timer Enable	BOOTVEC: 0x00 BOOTSTAT: 0x00 SEC0: 0x00 SEC1: 0x00 SEC2: 0x00 SEC3: 0x00
Flash Erase Global Erase all Flash Sector 0 (0x0000-0x00FF) Sector 1 (0x0100-0x01FF) Sector 2 (0x0200-0x02FF) Sector 3 (0x0300-0x03FF)	

Fig 3. Settings for the EMP900 as ICP programmer

Table 2: ICP connection to EPM900 pin

ICP Pin	Hook up to EPM900 pin
P0.4/PDA programming Data pin	P0.4
P0.5/PCL programming clock pin	P0.5
P1.5/RST ICP mode entry pin	P1.5
V _{DD} needed for ICP mode entry	V _{DD}
V _{SS}	V _{SS}

When using the LPC901/902/903 make sure that the 'Pin to Pin' is selected in the 'Adapter' option.

When the EPM900 is hooked up to the Application board and the project you want to program into the microcontroller is open press the 'LOAD' button on the Build toolbar to start downloading code to the microcontroller.

4. Modifying the MCB900 as ICP programmer

The MCB900 evaluation board from Keil Software can be modified to be able to work as an ICP programming device. Only 1 PNP transistor and an ICP ribbon cable to the application board is needed.

The LPC932 on the MCB900 can be programmed to interface between the ISP protocol used by the FlashMagic ISP programming software and the ICP protocol needed to program the LPC9xx.

4.1 Hardware set-up of the MCB900

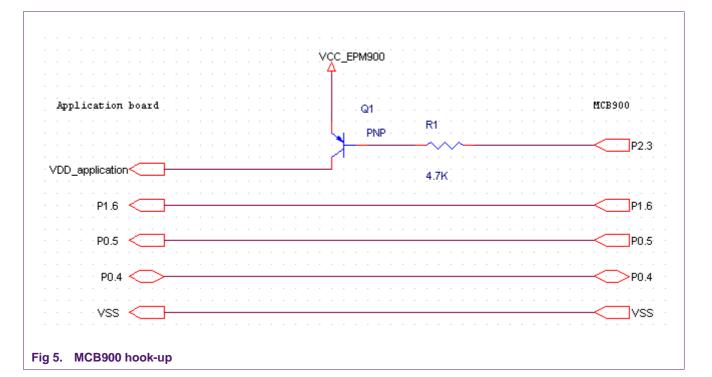

Table 3 shows how to hook up the MCB900 to the ICP target board.

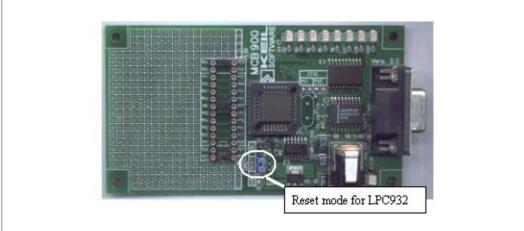
Table 3: ICP connection to MCB900 pin	
ICP Pin	Hook up to MCB900 pin
P0.4/PDA programming Data pin	P0.4
P0.5/PCL programming clock pin	P0.5
P1.5/RST ICP mode entry pin	P1.6
V _{DD} needed for ICP mode entry	P2.3[1]
V _{SS}	V _{SS}

 To control V_{DD}, a PNP transistor is needed, because P2.3 cannot supply enough current for the LPC9xx during programming.

How to use ICP

AN10258

4.2 Programming the ISP-ICP bridge code


For FlashMagic to be able to interface to the ICP protocol the ISP commands from FlashMagic have to be converted into ICP commands. This can be done by programming the ISP-ICP bridge code that will do the translation from FlashMagic's ISP commands to ICP commands.

Step 1:

• If not yet installed or if you have a version before 1.77, install the latest FlashMagic from: <u>www.esacademy.com/software/flashmagic</u>.

Step 2:

- Program the LPC932 device on the MCB900 board with the ISP-ICP bridge code using the FlashMagic software you installed in step 1.
- Set the jumper on the MCB900 board to the RESET position:

Fig 6. MCB900 in Reset mode

- Connect the MCB900 to your PC COM port using a serial cable.
- Power up the MCB900 board.
- Start FlashMagic (Start | Programs | FlashMagic | FlashMagic).
- Go to 'Options | Advanced Options | Hardware Config' and make sure the box 'Use DTR and RTS to enter ISP mode' is selected:

A	dvanced Options	
	Communications Hardware Config Security Just In Time Code Misc Use DTR and RTS to enter ISP mode Hardware: Keil MCB 900 When using ISP remove RUN jumper and insert RESET jumper	
Fig 7. Use DTR an	Cancel Cancel	

 Go to 'Options | Advanced Options | Security' and make sure the 'Protect ISP code' option is selected:

Advanced Options		X
Communications Hardware Config Fortect ISP Code Code	Security Just In Time Code Misc	
	Cancel OK	

- Select the COM port you will be using to program the LPC932.
- Select the P89LPC932 as the device to be programmed.
- Select baud rate 9600.
- Browse to the prog90x.hex file (this first has to be unzipped from the ZIP that includes the appnote).
- Check the 'erase all' Flash box.
- Click start program the ISP-ICP bridge code into the P89LPC932:

How to use ICP

AN10258

ile ISP _ 1	Options Help		2		
1	COM Port: C Baud Rate: 9 Device: 8	600 🔽	Erase block Erase block Erase block Erase block	0 (0x0000-0x03FF 1 (0x0400-0x07FF 2 (0x0800-0x08FF 3 (0x0C00-0x0FFF 4 (0x1000-0x13FF 5 (0x1400-0x17FF Flash	
3 Hex Fil		ge source code\prog 3/11/2003 10:50:03 -		6.54 Kbytes	Browse
		ng 🔲 Block O Sec.	Bit 0 🔺	D	
🗖 Fill	fy after programmin unused Flash nerate checksums cute	Block 0 Sec.	Bit. 1 🚞 📋	Start	
Exe	unused Flash herate checksums icute	Block 0 Sec.	Bit. 1 🗾 Bit. 2 💌		

4.3 Programming the LPC900

Once all setups from the previous chapter have been made, using FlashMagic the LPC900 devices can be programmed in 5 steps corresponding to the numbered steps on the FlashMagic User Interface.

Step 0:

- Disconnect the power cable from the MCB900 board
- Make sure that the jumpers on the application board are set for ICP programming mode and reset your application board is connected properly to the MCB900 board.
- Plug the power cable back in to enter ICP mode on the LPC9xx (the ICP mode is only entered on power-up of the MCB900). LED P2.3 on the MCB900 board should light up.
- Start FlashMagic (Start | Programs | FlashMagic | FlashMagic).

Step 1:

 Select the COM port (make sure it is not already taken by another application, e.g. some PDA software)

- Select a baud rate of 19200 baud (the ISP-ICP bridge application has a fixed baud rate of 19200 baud)
- Select the LPC900 device you would like to program.
- At this point you can do a quick read of the device signature bytes to make sure you're connected to the LPC9xx:

15
DD
13
-
se
•

If FlashMagic cannot read the Device Signature or you get all FF's, please check your setup. See chapter 5.1 for the correct ID bytes.

Step 2

Select which Flash blocks should be erased before the programming operation.

Step 3

Select the hex file to be programmed.

Step 4

Can be used to set security bits and fill unused Flash (optional)

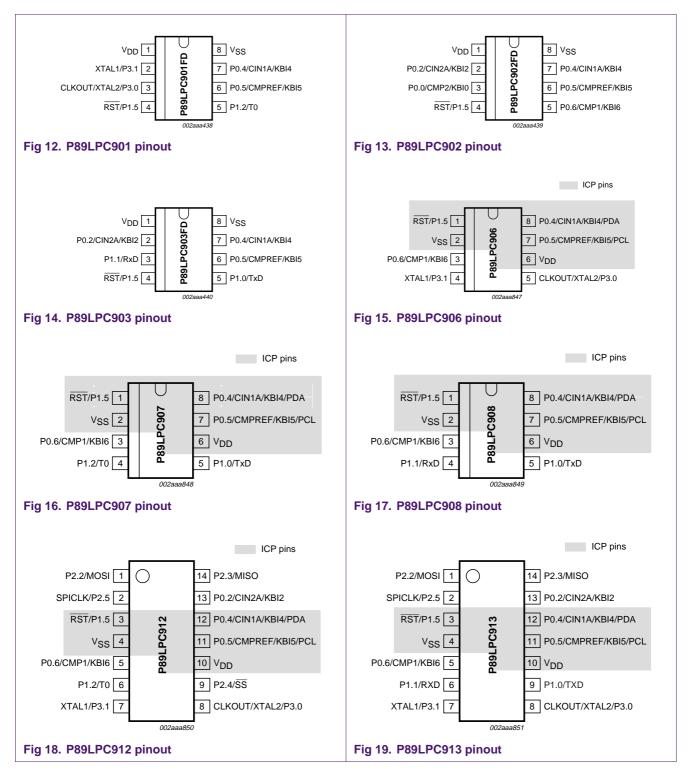
Step 5

Start programming!

4.4 Verification of the programmed code using CRCs

The LPC90x verifies using CRC (Cyclic Redundancy Check). The make sure the LPC90x has been programmed correctly, use the 'ISP | Cyclic Redundancy Check' option in FlashMagic.

For example, after the LED-Blinker code for the LPC901/2/3 is programmed into an LPC901 device, go to 'ISP | Cyclic Redundancy Check':

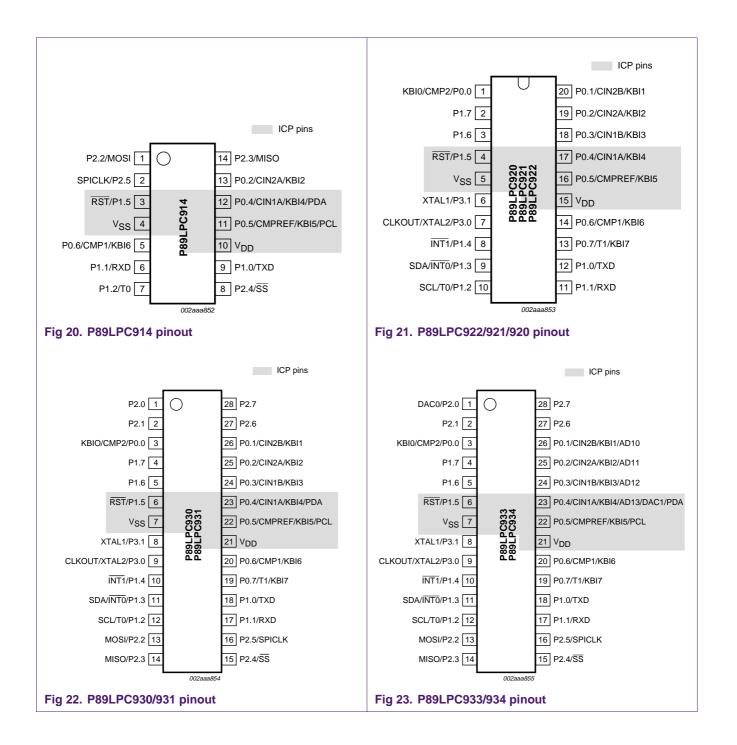

AN10258

Block	Device CRC	Hex Files CRC	
0 (0x0000-0x00FF)	0x6587FAB7	0x6587FAB7	
1 (0x0100-0x01FF)	0x00000000	0x00000000	
2 (0x0200-0x02FF)	0x00000000	0x00000000	
3 (0x0300-0x03FF)	0x00000000	0x00000000	
All Memory	0x9A04A9BB	0x9A04A9BB	
lex Files: D:\LPC901_2	-	-	hex Add

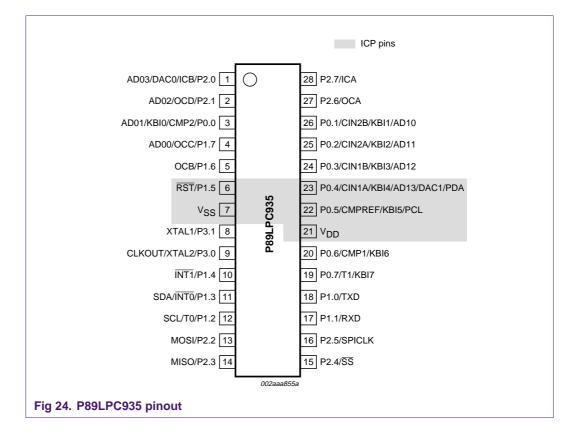
The Device CRC column gives you the CRC checksum for each block plus the Global CRC checksum for the whole device. As you can see from the image above, The Device CRC matches the corresponding Hex File CRC from the hex file on the CD ROM. This means that the device was programmed successfully. (Please note that the code for the LED Blinker on the LPC906/7/8 has a different CRC).

5. Devices that are supported with the ICP programming interface

5.1 8-pin packages



AN10258


How to use ICP

How to use ICP

AN10258

AN10258 How to use ICP

5.2 Device ID bytes

Table 4: Device ID bytes				
Device	MFGID	ID1	ID2	
P89LPC901	15h	DD	0Dh	
P89LPC902	15h	DD	0Fh	
P89LPC903	15h	DD	10h	
P89LPC906	15h	DD	11h	
P89LPC907	15h	DD	12h	
P89LPC908	15h	DD	13h	
P89LPC912	15h	DD	14h	
P89LPC913	15h	DD	15h	
P89LPC914	15h	DD	16h	
P89LPC920	15h	DD	1Ah	
P89LPC921	15h	DD	0Bh	
P89LPC922	15h	DD	0Ch	
P89LPC930	15h	DD	19h	
P89LPC931	15h	DD	09h	
P89LPC933	15h	DD	A0h	
P89LPC934	15h	DD	1Dh	
P89LPC935	15h	DD	1Eh	

6. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

7. Contents

1	Introduction 3
2	Hooking up ICP to the Application board 3
3	Using the EPM900 as an ICP programmer 5
3.1	Set-up 5
4	Modifying the MCB900 as ICP programmer 7
4.1	Hardware set-up of the MCB900 7
4.2	Programming the ISP-ICP bridge code 8
4.3	Programming the LPC900 11
4.4	Verification of the programmed code using CRCs 12
5	Devices that are supported with the ICP
	programming interface 14
5.1	8-pin packages
5.2	Device ID bytes 16
6	Disclaimers 17

© Koninklijke Philips Electronics N.V. 2003

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 24 March 2004 Document order number: 9397 750 12995